

Our Ref: J-2823 05 January 2023

Stuart Keogh c/o Purelight Architecture & Landscape Prow Park Treloggan Newquay TR7 2SX

RE: Proposed Statue at Killacourt Field, Newquay TR7 1DT - Drainage Statement

Introduction

Stuart Keogh is proposing to erect a permanent sculpture depicting a surfer on a wave at Killacourt Field, Newquay. In line with the Newquay Neighbourhood Plan (NNP), further consideration is required for the disposal of surface water from the development. Engineering and Development Solutions have been commissioned to provide a drainage statement for the development.

This report comprises the drainage statement for the proposed statue, in line with the National Planning Policy Framework (NPPF), Planning Practice Guidance (PPG), NNP, and Drainage Guidance for Cornwall (DGfC).

Drainage Policy

The site is not within a Critical Drainage Area and is less than 1 hectare in area, therefore any surface water drainage for the site should comply with the relevant guidance laid out in Drainage Guidance for Cornwall (DGfC). The DGfC document is currently under review, though until an updated version is published, advice appropriate to the proposed development is reproduced below for ease of reference:

"Outside Critical Drainage Areas

Small Development Sites, less than 1 hectare.

- Following the Building Regulations Drainage hierarchy, surface water should:
 - i. Drain to a soakaway or infiltration system designed in accordance with the SUDS Manual CIRIA C697, using a minimum of a 30-year return period storm.

Where infiltration is not possible:-

- ii. A sustainable drainage system shall be provided ensuring flow attenuation, no adverse impact on water quality and where possible habitat creation.
- The total discharge from the site should aim to mimic greenfield rates. These shall be no more than the theoretical greenfield run-off rates from each of the corresponding 1, 10, 30 and 100 year storms. When these values are less than 5 litres/second, a rate of 5 litres/second can be used. Attenuation may not be necessary if the discharge is directly to coastal waters. In these cases the impact on the receiving environment in terms of habitat, erosion and water quality should be assessed.
- The design must take into account the appropriate allowance for increased rainfall from climate change. This should be based on the lifetime of the development, the guidance in Annex B of PPS25 and the PPS25 Practice Guide."

The site should also adhere to more recent guidance (2019) in the NNP, as summarised below:

"Policy: G2 - Development Principles

i. Sustainable Drainage Systems (SuDS) must be considered for all development and developers must consult with the Local Planning Authority on the requirement for SuDS. Where development is phased, SuDS must be integrated into the overall design and demonstrate how water will travel at each phase of development; its size and location within or near to the proposed development; responsibility for its ongoing maintenance. If it is agreed with the Local Planning Authority that SuDS is not required, the developer must qualify what type of drainage system will be installed that remains in conformity to the NNP and provide evidence of its effectiveness in preventing flood risk including to surrounding areas.

Policy: CC3 - Drainage Management

- a. Applications for development within 30 metres of the Exclusion Zone (i.e. the CEV Zone) as identified on map CC a,b,c & d will be required to provide a Drainage Impact Assessment showing how foul water and surface water will be managed.
- b. Proposals must demonstrate how the development will provide for the drainage of surface water directly into existing sewers, without exceeding their capacity.
- c. The use of drainpipes which would discharge water onto any cliff or cliff face will not be supported.
- d. The use of soakaways and permeable surfaces in the Exclusion Zone or within 5 metres of it will not be supported.
- e. The use of water collection tanks within or immediately adjacent to the Exclusion Zone will not be supported."

Existing Drainage Infrastructure

The site is served by an existing surface water drainage system installed as part of the regeneration of Killacourt, which discharges into the public combined sewer at a controlled rate. Runoff originating from hardstanding and buildings at Killacourt is routed towards a flow control device limiting the flow to 3 l/s before entering the public sewer, as indicated in **Figure 1** below. If upstream flow exceeds 3 l/s, water backs up into a storage tank sized to contain the 1 in 100-year storm event including climate change allowance.

Ground Conditions

According to BGS mapping, the underlying bedrock geology is the Bovisand Formation – Mudstone, siltstone and sandstone. Soilscapes map viewer indicates that the site is situated on freely draining loamy soils over rock. The site is not located within a Groundwater Source Protection Zone (SPZ). The site appears to be within 30m of the Coastal Erosion Vulnerability (CEV) Zone.

Trial pits excavated on site in May 2020 for percolation testing failed to drain sufficiently in line with BRE 365.

The site is situated not far from the eroding cliff edge, so introducing infiltration systems into the ground may impact coastal stability. It is therefore considered that the use of infiltration for surface water disposal is not suitable for this site.

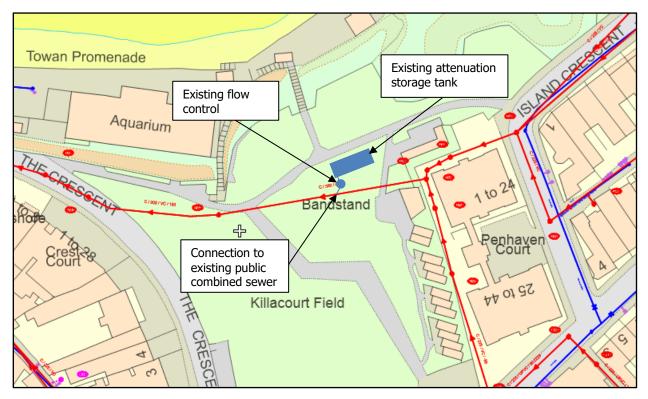


Figure 1 – Indicative Existing Drainage Arrangements

Drainage Design – Surface Water

In line with sustainable drainage hierarchy, it is preferable to use infiltration-based surface water drainage systems within the curtilage of site to deal with runoff as close to source as possible. However, it is determined that a soakaway drainage system compliant with BRE 365 is not suitable for this site.

As infiltration drainage has been ruled out as a viable option to deal with surface water from development on this site, it is proposed to connect into the existing surface water attenuation system which restricts the surface water discharge from the wider Killacourt Field. This is to ensure no increase in runoff rates and overland flows downstream of the site and consequently flood risk to downstream properties or interests will not increase.

It is anticipated that runoff may originate from the proposed statue base, which has a surface area of 9m². It is proposed that surface water originating from the base will drain towards the existing flow control device limiting the flow to 3.0 l/s, which discharges into the public combined sewer.

If the upstream flow exceeds 3.0 l/s, the system will back up into a storage tank sized to contain the 1 in 100-year rainfall event including climate change allowance. Calculations suggest that an additional flow volume of 0.4m³ would be created by the statue base and that the existing storage tank volume of 24m³ has suitable spare capacity to incorporate flows from the proposed statue base.

Figure 2 below shows the indicative layout of the proposed surface water drainage system on the site; calculations are included in **Annex A** of this report.

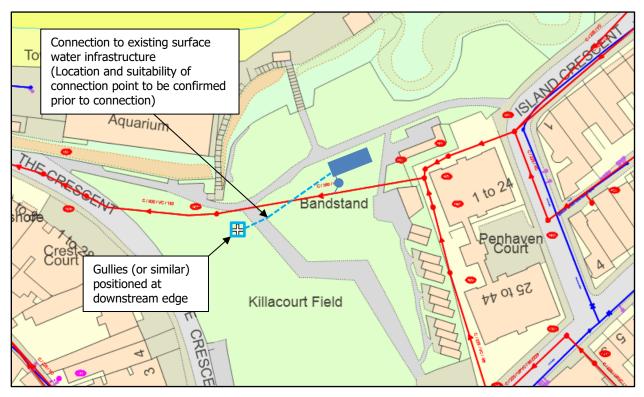


Figure 2 – Proposed Statue Drainage Arrangements

Management & Maintenance

The surface water drainage system will remain in private ownership. Management and maintenance responsibility for the Killacourt Field drainage system lies with Newquay Town Council.

Maintenance activities will broadly comprise regular maintenance, monitoring, and remedial work where necessary, as per the guidance in the CIRIA SuDS Manual C753 as summarised in **Table 2** below.

ATTENUATION TANK		
Maintenance Activity	Required Action	Typical Frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
Regular maintenance	Remove debris form the catchment surface (where it may cause risks to performance)	Monthly
	Remove sediment from pre-treatment structures and/or internal forebays	Annually, or as required
Remedial actions	Repair/rehabilitate inlets, outlet, overflows, and vents	As required
Monitoring	Inspect/check all inlets, outlets, vents, and overflows to ensure they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required

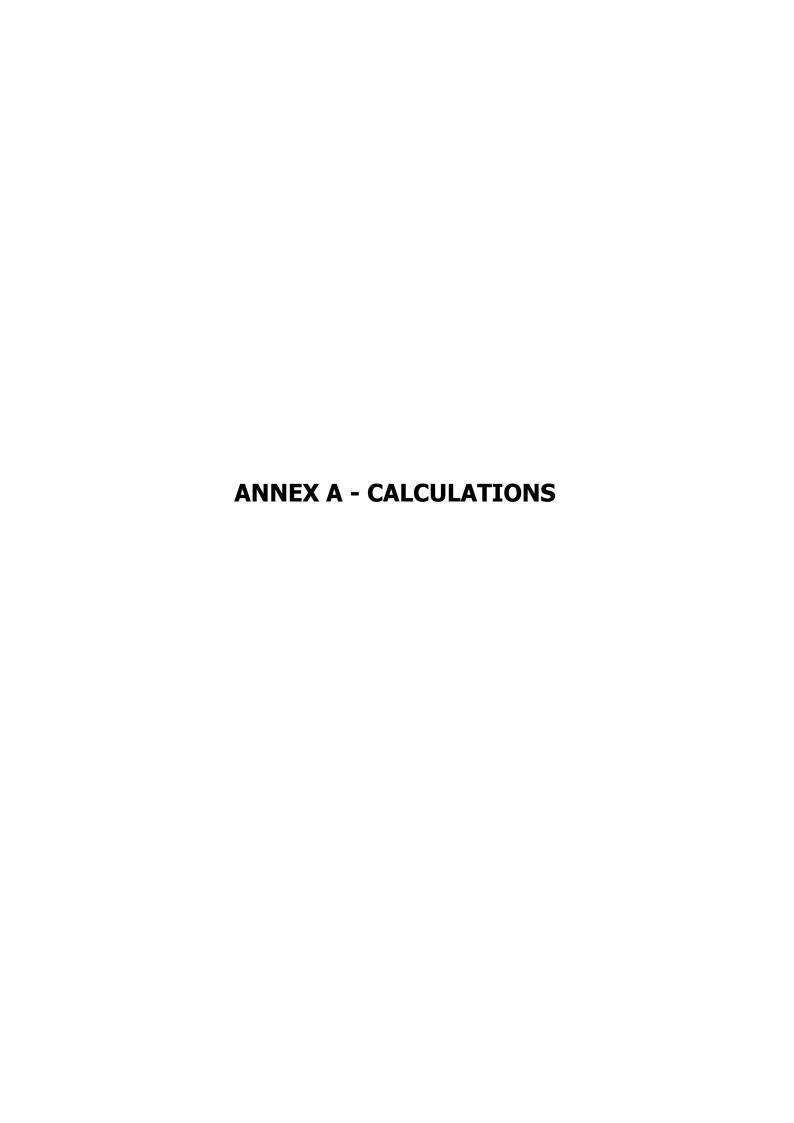
Table 1 – Typical Operation and Maintenance Requirements for SuDS

Exceedance Events

In the unlikely event of a storm more than the 1 in 100-year return period rainfall event (including climate change allowance), or if the proposed drainage system were to become blocked, water may surcharge from the system. In this case it is considered that the overflowing water would run in a northerly direction towards the adjacent grass area, as per the pre-development scenario.

Due to the storage provided in the proposed attenuation system, and design standard used (1 in 100-year storm with an additional allowance for the effects of climate change), any exceedance flows would be lower than would flow off the site in the pre-development scenario for a similar storm event.

Conclusions


The site is not suitable for the use of infiltration drainage to deal with surface water at the site. As such it is proposed to connect into the existing Killacourt Field attenuation-based drainage system and this has been designed to the 100-year standard with allowance for climate change, in line with drainage design standards required by Cornwall Council LLFA.

The existing surface water system serving Killacourt Field has capacity to accept flows from the proposed statue base and discharges into the public combined sewer at a controlled rate of 3 l/s.

The indicative proposed drainage layout is shown in **Figure 2** above; calculations are included in **Annex A**.

Provided the recommendations outlined in this report are adopted in the development proposal then there is the capacity to manage the surface water runoff from the development in line with best practice. The proposed drainage infrastructure has been designed in accordance with guidance outlined in NPPF, Drainage Guidance for Cornwall and Newquay Neighbourhood Plan and therefore the development is entirely appropriate on this site from a surface water drainage perspective.

Enc. Annex A Calculations

Engineering and Development Solu	Page 1	
Unit E4	Killcourt Statue	
Threemilestone Industrial Es	Newquay	
Truro, TR4 9LD		Micro
Date 22/12/2022	Designed by EC	Drainage
File J-2823 ATTENUATION TANK	Checked by JC	Drairiage
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 70 minutes.

:	Storm	Max	Max	Max	Max	Max	Max	Max	Status
1	Event	Level	Depth	Infiltration	Control	Overflow	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(1/s)	(m³)	
1 5	min Summe	20 062	0 222	0.0	3.0	0.0	3.0	11.7	ОК
	min Summer			0.0	3.0	0.0	3.0	15.8	O K
	min Summer			0.0	3.0	0.0	3.0	18.9	0 K
	min Summer			0.0	3.0	0.0	3.0	20.1	O K
180	min Summe	20.283	0.543	0.0	3.0	0.0	3.0	19.8	O K
240	min Summer	20.261	0.521	0.0	3.0	0.0	3.0	19.0	O K
360	min Summer	20.201	0.461	0.0	3.0	0.0	3.0	16.8	ОК
480	min Summer	20.130	0.390	0.0	3.0	0.0	3.0	14.2	ОК
600	min Summer	20.067	0.327	0.0	3.0	0.0	3.0	11.9	ОК
720	min Summer	20.014	0.274	0.0	3.0	0.0	3.0	10.0	ОК
960	min Summer	19.932	0.192	0.0	3.0	0.0	3.0	7.0	ОК
1440	min Summer	19.852	0.112	0.0	2.8	0.0	2.8	4.1	ОК
2160	min Summe	19.824	0.084	0.0	2.3	0.0	2.3	3.0	O K
2880	min Summe	19.810	0.070	0.0	1.8	0.0	1.8	2.6	O K
4320	min Summer	19.797	0.057	0.0	1.3	0.0	1.3	2.1	ОК
5760	min Summe	19.790	0.050	0.0	1.1	0.0	1.1	1.8	O K
7200	min Summe	19.786	0.046	0.0	0.9	0.0	0.9	1.7	O K
8640	min Summe	19.782	0.042	0.0	0.8	0.0	0.8	1.5	O K
10080	min Summer	19.779	0.039	0.0	0.7	0.0	0.7	1.4	ОК
15	min Winter	20.107	0.367	0.0	3.0	0.0	3.0	13.4	ОК

Storm		Rain	Flooded	Discharge	Overflow	Time-Peak		
	Event		(mm/hr)	Volume	Volume	Volume	(mins)	
				(m³)	(m³)	(m³)		
15	min	Summer	104.373	0.0	14.5	0.0	22	
30	min	Summer	72.185	0.0	20.0	0.0	35	
60	min	Summer	47.821	0.0	26.5	0.0	60	
120	min	Summer	30.679	0.0	34.0	0.0	94	
180	min	Summer	23.321	0.0	38.8	0.0	128	
240	min	Summer	19.055	0.0	42.3	0.0	164	
360	min	Summer	14.198	0.0	47.3	0.0	232	
480	min	Summer	11.527	0.0	51.2	0.0	296	
600	min	Summer	9.797	0.0	54.4	0.0	356	
720	min	Summer	8.572	0.0	57.1	0.0	414	
960	min	Summer	6.935	0.0	61.6	0.0	528	
1440	min	Summer	5.133	0.0	68.3	0.0	746	
2160	min	Summer	3.788	0.0	75.7	0.0	1104	
2880	min	Summer	3.049	0.0	81.2	0.0	1468	
4320	min	Summer	2.239	0.0	89.5	0.0	2204	
5760	min	Summer	1.796	0.0	95.7	0.0	2888	
7200	min	Summer	1.516	0.0	101.0	0.0	3664	
8640	min	Summer	1.320	0.0	105.5	0.0	4384	
10080	min	Summer	1.174	0.0	109.5	0.0	5120	
15	min	Winter	104.373	0.0	16.2	0.0	23	

Engineering and Development Solu	Page 2	
Unit E4	Killcourt Statue	
Threemilestone Industrial Es	Newquay	
Truro, TR4 9LD		Micro
Date 22/12/2022	Designed by EC	Drainage
File J-2823 ATTENUATION TANK	Checked by JC	Dialilade
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	Vinter	20.237	0.497	0.0	3.0	0.0	3.0	18.1	ОК
60	min W	Vinter	20.335	0.595	0.0	3.0	0.0	3.0	21.7	O K
120	min W	Vinter	20.369	0.629	0.0	3.0	0.0	3.0	22.9	O K
180	min W	Vinter	20.351	0.611	0.0	3.0	0.0	3.0	22.3	O K
240	min W	Vinter	20.315	0.575	0.0	3.0	0.0	3.0	21.0	O K
360	min W	Vinter	20.220	0.480	0.0	3.0	0.0	3.0	17.5	O K
480	min W	Vinter	20.103	0.363	0.0	3.0	0.0	3.0	13.2	O K
600	min W	Vinter	20.008	0.268	0.0	3.0	0.0	3.0	9.8	O K
720	min W	Vinter	19.936	0.196	0.0	3.0	0.0	3.0	7.2	O K
960	min W	Vinter	19.856	0.116	0.0	2.9	0.0	2.9	4.2	O K
1440	min W	Vinter	19.823	0.083	0.0	2.2	0.0	2.2	3.0	O K
2160	min W	Vinter	19.805	0.065	0.0	1.6	0.0	1.6	2.4	O K
2880	min W	Vinter	19.797	0.057	0.0	1.3	0.0	1.3	2.1	O K
4320	min W	Vinter	19.787	0.047	0.0	1.0	0.0	1.0	1.7	O K
5760	min W	Vinter	19.782	0.042	0.0	0.8	0.0	0.8	1.5	O K
7200	min W	Vinter	19.778	0.038	0.0	0.7	0.0	0.7	1.4	O K
8640	min W	Vinter	19.775	0.035	0.0	0.6	0.0	0.6	1.3	O K
10080	min W	Vinter	19.773	0.033	0.0	0.5	0.0	0.5	1.2	O K

	Storm		Rain	Flooded	Discharge	Overflow	Time-Peak	
	Event		(mm/hr)	Volume	Volume	Volume	(mins)	
				(m³)	(m³)	(m³)		
30	min	Winter	72.185	0.0	22.4	0.0	35	
60	min	Winter	47.821	0.0	29.7	0.0	60	
120	min	Winter	30.679	0.0	38.1	0.0	100	
180	min	Winter	23.321	0.0	43.5	0.0	138	
240	min	Winter	19.055	0.0	47.4	0.0	176	
360	min	Winter	14.198	0.0	52.9	0.0	252	
480	min	Winter	11.527	0.0	57.3	0.0	314	
600	min	Winter	9.797	0.0	60.9	0.0	372	
720	min	Winter	8.572	0.0	63.9	0.0	424	
960	min	Winter	6.935	0.0	69.0	0.0	520	
1440	min	Winter	5.133	0.0	76.5	0.0	742	
2160	min	Winter	3.788	0.0	84.8	0.0	1108	
2880	min	Winter	3.049	0.0	90.9	0.0	1468	
4320	min	Winter	2.239	0.0	100.2	0.0	2188	
5760	min	Winter	1.796	0.0	107.2	0.0	2936	
7200	min	Winter	1.516	0.0	113.1	0.0	3536	
8640	min	Winter	1.320	0.0	118.1	0.0	4368	
10080	min	Winter	1.174	0.0	122.6	0.0	5144	

Engineering and Development Solu	Page 3	
Unit E4	Killcourt Statue	
Threemilestone Industrial Es	Newquay	
Truro, TR4 9LD		Micro
Date 22/12/2022	Designed by EC	Drainage
File J-2823 ATTENUATION TANK	Checked by JC	Dialilade
Innovyze	Source Control 2020.1.3	

Rainfall Details

 Return
 Rainfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 17.000
 Shortest Storm (mins)
 15

 Ratio R
 0.300
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.074

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.025	4	8	0.025	8	12	0.024

Engineering and Development Solutions Ltd					
Unit E4	Killcourt Statue				
Threemilestone Industrial Es	Newquay				
Truro, TR4 9LD		Micro			
Date 22/12/2022	Designed by EC	Drainage			
File J-2823 ATTENUATION TANK	Checked by JC	Dialilade			
Innovyze	Source Control 2020.1.3				

Model Details

Storage is Online Cover Level (m) 21.000

Cellular Storage Structure

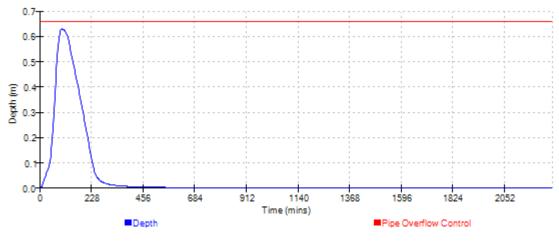
Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		38.4			38.4	0.	.661		0.0			57.4
0.	660		38.4			57.4							

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0087-3000-0660-3000 0.660 Design Head (m) Design Flow (1/s) 3.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 87 Invert Level (m) 19.740 Minimum Outlet Pipe Diameter (mm) 100 1200 Suggested Manhole Diameter (mm)

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	0.660	3.0
	Flush-Flo™	0.196	3.0
	Kick-Flo®	0.441	2.5
Mean Flow ove	r Head Range	_	2.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated


Depth (m) E	flow (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.7	1.200	3.9	3.000	6.1	7.000	9.0
0.200	3.0	1.400	4.2	3.500	6.5	7.500	9.3
0.300	2.9	1.600	4.5	4.000	6.9	8.000	9.7
0.400	2.7	1.800	4.8	4.500	7.3	8.500	10.0
0.500	2.6	2.000	5.0	5.000	7.7	9.000	10.2
0.600	2.9	2.200	5.2	5.500	8.1	9.500	10.5
0.800	3.3	2.400	5.5	6.000	8.4		
1.000	3.6	2.600	5.7	6.500	8.7		

Engineering and Development Solu	tions Ltd	Page 5
Unit E4	Killcourt Statue	
Threemilestone Industrial Es	Newquay	
Truro, TR4 9LD		Micro
Date 22/12/2022	D = = D = D =	Drainage
File J-2823 ATTENUATION TANK	Checked by JC	Dialilads
Innovyze	Source Control 2020.1.3	

Pipe Overflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 20.400 Roughness k (mm) 0.600

nit E4	tions L Killco	Page 6						
hreemilestone	Industrial	Es	Newquay	7				
ruro, TR4 9LD								Micro
ate 22/12/2022			Designed by EC					
File J-2823 ATTENUATION TANK			Checked	Draina				
nnovyze	1	Source	<u>'</u>					
			. 100					
		<u> Event</u>	: 120 m	<u>lln Wln</u>	ter			
¹⁴ T					-:	-;	- ;	
12-			<u> </u>	:				
10					:			
@ 8+ //								
How (ks)								
Ē 0		1						
4+/								
2								
- / / /								
0 228	456 6	B4 9	12 1	140 1	368	1596	1824	2052
			Time (m	ins)				
	Inflow					Outflow		
²⁴ T · · · · · · · · · · · · · · · · · · ·		:				-:		
21								
1 / /								
18+				i				
_ 15+			<u> </u>		-			
E 12-		; !						
(Liu) 12-								
≥ 9 + · {······\·\:								
- 1 1			ļ					
6+					1	1		
e+ / · · · · /			ļ	!				
	_		<u> </u>					

